Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

3D Complete

Efficient 3D Completeness Inspection.
In Europe there are about 3000 SMEs working in the field of machine vision. These SMEs provide services and products to another 300.000 SMEs in the machine building and automation sector. One important application of machine vision is quality control and in particular checking the completeness (presence/absence of parts, correct type, position, orientation) of assemblies.

Existing systems usually apply 2D cameras that provide a monochrome or color image. These images lack the information of depth and consequently have problems when dealing with non-rigid objects (hoses, cables) or low contrast between background and part and they often do not provide an optimal view on each single part of the assembly.
This project aims at developing efficient 3D completeness inspection methods that exploit two different technologies. The first one is based on calculating arbitrary views of an object given a small number of images of this object, the second one aims at combining 3D shape data with color and texture information. Both of the technologies will cover the full chain from data acquisition via pre-processing to the final decision-making. They will focus on using standard hardware to create a cost efficient technology.

 

Official website: https://cordis.europa.eu/project/id/262009